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Abstract
The symmetry structure of the non-Abelian affine Toda model based on the
coset SL(3)/SL(2) ⊗ U(1) is studied. It is shown that the model possess non-
Abelian Noether symmetry closing into a q-deformed SL(2) ⊗ U(1) algebra.
Specific two-vertex soliton solutions are constructed.

PACS numbers: 11.25.Hf, 02.30.Ik, 11.10.Lm

1. Introduction

The family of 2D relativistic integrable models (IM) known as affine Toda field theories
(ATFTs) have been intensively studied due to their relation to certain deformations of 2d
conformal field theories (CFT) [1–4] as well as due to their rich soliton spectrum [5–7].
Certain integrable perturbations of SU(N)-WZW models and their gauged versions related to
ATFTs have also important applications in the condensed mATFTer problems, for example in
the description of Heisenberg antiferromagnetic spin chains and ladders [8].

According to their symmetries we distinguish two classes of ATFTs: Abelian (A) and
non-Abelian (NA) ones. The main feature of the non-Abelian ATFTs is that they manifest
local or global Noether symmetries (say, U(1)⊗l , SL(2) ⊗ U(1), etc), while the Abelian ones
do not possess any other symmetries except the discrete Zn in the case of imaginary coupling.
As a consequence the NA-ATFTs admit topological solitons carrying certain Noether charges
as well. Examples of electrically charged (U(1) or U(1) ⊗ U(1)) topological solitons have
been constructed in [9–12]. As is well known [13], such finite energy classical solutions play
a crucial role in the semiclassical quantization as well as for establishing their strong-coupling
particle spectra [14]. The exact quantum S-matrices of certain T-self-dual NA Toda models
[15] with U(1) symmetry have been derived in [16].

Although the general theory for constructing non-Abelian affine Toda theories is well
developed in terms of graded affine algebras (see, for instance, [17, 18] and references
therein), its application to specific NA-ATFT possessing non-Abelian symmetries gives rise to
certain unexpected and interesting structures. One of them is related to the existence of pairs
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of T-dual NA-ATFT models described in [19]. In this paper we will discuss a q-deformed
algebraic structure that appears in the simplest integrable model of this type, based on the
coset SL(3)/SL(2) ⊗ U(1), constructed in section 2 (see also section 6 of [11]). In section 3
we show that it is invariant under specific non-local and non-Abelian transformations and the
corresponding Noether charges close a q-deformed SL(2, R)⊗U(1) Poisson bracket algebra.
As a consequence its soliton solutions carry both U(1) and isospin charges. The goal of
this paper is to explicitly construct these 1-soliton solutions and to investigate their internal
non-Abelian symmetries. The two-vertex soliton solutions obtained in sections 4 and 5 by the
dressing method represent a specific subclass of 1-solitons whose spectrum depends on one
real parameter only. Their masses and charges are derived in section 5.

2. Affine Toda models with non-Abelian symmetries

2.1. The model in the group G0

As is well known [18], the generic NA Toda models are classified according to a G0 ⊂ G
embedding induced by the grading operator Q decomposing a finite- or infinite-dimensional
Lie algebra G = ⊕iGi where [Q,Gi] = iGi and [Gi ,Gj ] ⊂ Gi+j . A group element g can then
be written in terms of the Gauss decomposition as

g = NBM (2.1)

where N = expG<,B = expG0 and M = expG>. The physical fields lie in the zero grade
subgroup B and the models we seek correspond to the coset H−\G/H+, for H± generated by
positive/negative grade operators.

For consistency with the Hamiltonian reduction formalizm, the phase space of the
G-invariant WZW model is reduced by specifying the constant generators ε± of grade ±1. In
order to derive an action for B, invariant under

g −→ g′ = α−gα+ (2.2)

where α±(z, z̄) lie in the positive/negative grade subgroup we have to introduce a set of
auxiliary gauge fields A ∈ G< and Ā ∈ G> transforming as

A −→ A′ = α−Aα−1
− + α−∂α−1

− Ā −→ Ā′ = α−1
+ Āα+ + ∂̄α−1

+ α+ (2.3)

where ∂ = ∂t +∂x, ∂̄ = ∂t −∂x . The resulting action is the G/H(= H−\G/H+) gauged WZW

SG/H (g,A, Ā) = SWZW(g) − k

4π

∫
d2x Tr(A(∂̄gg−1 − ε+) + Ā(g−1∂g − ε−) + AgĀg−1).

Since the action SG/H is H-invariant, we may choose α− = N−1 and α+ = M−1. From the
orthogonality of the graded subpaces, i.e. Tr(GiGj ) = 0, i + j �= 0, we find

SG/H (g,A, Ā) = SG/H (B,A′, Ā′)

= SWZW(B) − k

4π

∫
d2x Tr[−A′ε+ − Ā′ε− + A′BĀ′B−1] (2.4)

where we have introduced the WZW model action

SWZW = − k

4π

∫
d2x Tr(g−1∂gg−1∂̄g) +

k

24π

∫
D

εijk Tr(g−1∂igg−1∂jgg−1∂kg) d3x. (2.5)

Performing the integration over the auxiliary fields A and Ā, we find the effective action

S = SWZW(B) − k

2π

∫
Tr(ε+Bε−B−1) d2x (2.6)
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which describes integrable perturbations of the G0-WZNW model. These perturbations are
classified in terms of the possible constant grade ±1 operators ε±. The equations of motion
associated with action (2.6) are

∂̄(B−1∂B) + [ε−, B−1ε+B] = 0 ∂(∂̄BB−1) − [ε+, Bε−B−1] = 0. (2.7)

For the G = ˆSL(3) case with homogeneous gradation, Q = d and ε± = µλ2 · H(±1) and
B = nam, where

n = eχ̃1E−α1 eχ̃2E−α2 eχ̃3E−α1−α2 a = eR1λ1·H+R2λ2·H m = eψ̃1Eα1 eψ̃2Eα2 eψ̃3Eα1+α2 (2.8)

we find the explicit form for the action

Seff = − k

8π

∫
dz dz̄

(
1

3
(2∂R1∂̄R1 − ∂R1∂̄R2 − ∂R2∂̄R1 + 2∂R2∂̄R2) + 2∂χ̃1∂̄ψ̃1 eR1

+ 2∂χ̃2∂̄ψ̃2 eR2 + 2(∂χ̃3 − χ̃2∂χ̃1)(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2 − V

)
. (2.9)

where V = µ2
(
λ2

2 + ψ̃2χ̃2 eR2 + ψ̃3χ̃3 eR1+R2
)
.

2.2. Reduction to the coset G0
/
G0

0

We now introduce the subalgebra G0
0 such that

[
G0

0 , ε±
] = 0 as an additional ingredient which

characterizes the symmetry of action (2.6) under chiral transformations

B ′ = �̄(z̄)B�(z) �̄,� ∈ G0
0. (2.10)

As a consequence of symmetry under (2.10), the following chiral conservation laws are derived
from the equations of motion (2.7)

∂̄ Tr(XB−1∂B) = ∂ Tr(X∂̄BB−1) = 0 X ∈ G0
0 . (2.11)

In order to reduce the model to the coset G0
/
G0

0, we impose the subsidiary constraints

JX = Tr(XB−1∂B) = 0 J̄ X = Tr(X∂̄BB−1) = 0 X ∈ G0
0 (2.12)

which can be incorporated in the action by introducing the auxiliary gauge fields A(0), Ā(0) ∈
G0

0 . For the models where G0
0 = U(1), [9, 10] or G0

0 = U(1) ⊗ U(1), [11], the action was
constructed imposing symmetry under axial transformations

B ′′ = α0(z̄, z)Bα0(z̄, z) α0 ∈ G0
0

and

A′′(0) = A(0) − α−1
0 ∂α0 Ā′′(0) = Ā(0) − α−1

0 ∂̄α0. (2.13)

For a general non-Abelian G0
0 we can define a second grading structure Q′ = λ1 · H which

decomposes G0
0 into positive, zero and negative subspaces, i.e., G0

0 = G0,<
0 ⊕ G0,0

0 ⊕ G0,>
0 .

Following the same principle as in [9–11] we seek an action invariant under

B ′′ = γ0(z̄, z)γ−(z̄, z)Bγ+(z̄, z)γ0(z̄, z) γ0 ∈ G
0,0
0 γ− ∈ G

0,<
0 γ+ ∈ G

0,>
0

and choose γ0(z̄, z), γ−(z̄, z), γ+(z̄, z) ∈ G0
0 such that B ′′ = γ0γ−Bγ+γ0 = g

f

0 ∈ G0
/
G0

0.
Note that B is decomposed into the Gauss form according to the second grading structure Q′.
Denote 
− = γ0γ− and 
+ = γ+γ0. Then the action

S(B,A(0), Ā(0)) = S
(
g

f

0 , A′(0), Ā′(0)
) = SWZW(B) − k

2π

∫
Tr(ε+Bε−B−1) d2x

− k

2π

∫
Tr

(
A(0)∂̄BB−1 + Ā(0)B−1∂B + A(0)BĀ(0)B−1 + A

(0)
0 Ā

(0)
0

)
d2x

(2.14)
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is invariant under the transformations B ′ = 
−B
+,

A′ 0
0 = A

(0)
0 − γ −1

0 ∂γ0 Ā′ 0
0 = Ā

(0)
0 − γ −1

0 ∂̄γ0

A′(0) = 
−A(0)

−1
− − ∂
−
−1

− Ā′(0) = 
−1
+ Ā(0)
+ − 
−1

+ ∂̄
+

(2.15)

where A(0) = A
(0)
0 + A

(0)
− and Ā(0) = Ā

(0)
0 + Ā

(0)
+ and A

(0)
0 , Ā

(0)
0 ∈ G0,0

0 , A
(0)
− ∈ G0,<

0 , Ā
(0)
+ ∈

G0,>
0 .

Let us apply the above gauge fixing procedure for the simplest case of G0 =
SL(3, R),Q = d, ε± = µλ2 · H(±1) and G0

0 = SL(2, R) ⊗ U(1), i.e., for IM defined on
the coset 
− \SL(3)/
+ where 
± = exp(χ̃±E±α1) exp

(
1
2λi · HRi

)
. Hence the auxiliary

fields A
(0)
0 , Ā

(0)
0 , A

(0)
− and Ā

(0)
+ can be parametrized as follows:

A
(0)
0 = a1λ1 · H + a2(λ2 − λ1) · H Ā

(0)
0 = ā1λ1 · H + ā2(λ2 − λ1) · H

(2.16)
A

(0)
− = a21E

(0)
−α1

Ā(0)
+ = ā12E

(0)
α1

where ai(z, z̄), āi(z, z̄), a21(z, z̄) and ā12(z, z̄) are arbitrary functions and

g
f

0 = eχ1E−α1 +χ2E−α1−α2 eψ1Eα1 +ψ2Eα1+α2 . (2.17)

The relation between the fields ψ̃ i , χ̃i , Ri parametrizing the group element (2.8) and the
physical fields of the gauged model ψ1, χ1, ψ2, χ2 parametrizing g

f

0 is given by

B = e
1
2 R1λ1·H+ 1

2 R2λ2·H eχ3E−α1

(
g

f

0

)
eψ3Eα1 e

1
2 R1λ1·H+ 1

2 R2λ2·H (2.18)

or in components,

χ̃1 = χ3 e− 1
2 R1 ψ̃1 = ψ3 e− 1

2 R1

χ̃2 = χ2 e− 1
2 R2 ψ̃2 = ψ2 e− 1

2 R2

χ̃3 = χ1 e− 1
2 (R1+R2) ψ̃3 = ψ1 e− 1

2 (R1+R2).

(2.19)

In order to calculate the path integral over the auxiliary gauge fields (2.16) we first simplify
the last term in equation (2.14)

Tr
(
A

(0)
0 Ā

(0)
0 + A(0)g

f

0 Ā(0)g
f −1
0 + A(0)∂̄g

f

0 g
f −1
0 + Ā(0)g

f −1
0 ∂g

f

0

)
= āiMijaj + āiNi + N̄iai + ā12a21(1 + ψ2χ2) − ā12ψ2∂χ1 − a21χ2∂̄ψ1 (2.20)

where we have introduced the matrix M,

M =
( 4

3 + ψ1χ1 − 2
3

− 2
3

4
3 + ψ2χ2

)
(2.21)

and the vectors N and N̄ ,

N̄ = (−(∂̄ψ1 − ā12ψ2)χ1,−(χ2∂̄ψ2)) N =
(−(∂χ1 − a21χ2)ψ1

−(ψ2∂χ2)

)
. (2.22)

We first evaluate the integral over ai and āi in the partition function

Z =
∫

DBDA
(0)
0 DĀ

(0)
0 DA

(0)
− DĀ(0)

+ e−S(B,A(0),Ā(0)) (2.23)

i.e., the Gaussian integral∫
DāDa e

∫
(āMa+āN+N̄a) = const e−(N̄M−1N).
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Taking into account the explicit form of N̄M−1N ,i.e.,

NM−1N = 4�

3D
a21ā12 + 2

χ2a21

3D
(χ2ψ1∂̄ψ2 − 2(1 + ψ2χ2)∂̄ψ1)

+ 2
ψ2ā12

3D
(ψ2χ1∂χ2 − 2(1 + ψ2χ2)∂χ1)

+
1

3D
(−(4 + 3ψ2χ2)ψ1χ1∂̄ψ1∂χ1 − 2χ1ψ2∂χ2∂̄ψ3

− 2χ2ψ1∂̄ψ2∂χ1 − (4 + 3ψ1χ1)ψ2χ2∂̄ψ2∂χ2)

� = (1 + ψ2χ2)
2 + ψ1χ1

(
1 +

3

4
ψ2χ2

)

D = Det M = 4

3

(
1 + ψ1χ1 + ψ2χ2 +

3

4
ψ1χ1ψ2χ2

)
(2.24)

and equation (2.20), we integrate over a21 and ā12. As a result we derive the effective action
for the gauge fixed model1

Seff = − k

2π

∫
dz dz̄

(
1

�
(∂̄ψ2∂χ2(1 + ψ1χ1 + ψ2χ2) + ∂̄ψ1∂χ1(1 + ψ2χ2)

− 1

2
(ψ2χ1∂̄ψ1∂χ2 + χ2ψ1∂̄ψ2∂χ1)) − V

)
(2.25)

where V = µ2
(

2
3 + ψ1χ1 + ψ2χ2

)
. It appears to be the simplest generalization of the

complex sine-Gordon model [23] and belongs to the same hierarchy of the Fordy–Kulish
(multicomponent ) nonlinear Schrödinger model [20, 22]. One can also derive it as a further
Hamiltonian reduction of the A

(1)
2 -homogeneous sine-Gordon model [21].

It is worthwhile mentioning that the classical integrability of the gauged fixed model
(2.25) is a consequence of the integrability of the corresponding ungauged model (2.9). The
zero curvature (Lax) representation of the IM (2.9)(or equivalently (2.7)) has the well-known
form

∂Ā − ∂̄A − [A, Ā] = 0 A, Ā ∈ ⊕i=0,±1Gi (2.26)

with

A = −Bε−B−1 Ā = ε+ + ∂̄BB−1. (2.27)

We next impose the constraints (2.12) on the group element B (2.8), i.e. substituting the non-
physical fields R1, R2, ψ̃1 and χ̃1 by their nonlocal expressions obtained as a solution of the
constraints (2.12) (see equations (3.34) and (3.35) for their explicit form). This gives the Lax
connection A, Ā for the gauged model (2.25). It can easily be verified that substituting (2.27)
into (2.26) and taking into account (2.12) (or (3.34) and (3.35)), one reproduces the equations
of motion derived from the action (2.25). Then the existence of an infinite set (of commuting)
conserved charges Pm,m = 0, 1, . . . is a simple consequence of equation (2.26), namely,

Pm(t) = Tr(T (t))m ∂tPm = 0 T (t) = lim
L→∞

P exp
∫ L

−L

Ax(t, x) dx.

Hence, the above described procedure for the derivation of the NA affine Toda model (2.25)
as gauged G/H two loop WZW models leads to an integrable model by construction.

1 Since in this paper we are interested in the solution and symmetries of the classical gauge fixed model we are
consistently neglecting all the quantum contributions to Seff coming from the determinant factors, ghost field action,
counter terms, etc.
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3. Symmetries

3.1. Chiral symmetries in the group G0

Let us now discuss the symmetry structure of the ungauged IM on the SL(3) group
given by equation (2.9). It is generated by the chiral transformation (2.10), i.e., B ′ =
�̄(z̄)B�(z), �̄,� ∈ G0

0 = SL(2) ⊗ U(1) generated by {λ1 · H, λ2 · H,E±α1}. We make
use of the defining representation of SL(3) in terms of 3 × 3 matrices to parametrize the zero
grade group element B (2.8) in terms of the Gauss decomposition, i.e.,

B1,1 = e
2
3 R1+ 1

3 R2 B1,2 = B1,1ψ̃1 B1,3 = B1,1ψ̃3 B2,3 = B1,1(e
−R1ψ̃2 + χ̃1ψ̃3)

B2,1 = B1,1χ̃1 B2,2 = B1,1(e
−R1 + ψ̃1χ̃1) B3,1 = B1,1χ̃3

B3,2 = B1,1(e
−R1 χ̃2 + ψ̃1χ̃3) B3,3 = B1,1(ψ̃1χ̃1 + e−R1ψ̃2χ̃2 + e−R1−R2).

(3.28)

We also find for the chiral symmetry transformations

�1,1 = e
2
3 ε1+ 1

3 ε2 �1,2 = �1,1ε+ �2,1 = �1,1ε−
�2,2 = �1,1(e

−ε1 + ε−ε+) �3,3 = �1,1 e−ε1−ε2 (3.29)

�1,3 = �2,3 = �3,2 = �3,1 = 0

and �̄ = �(ε → ε̄) where ε = ε(z) and ε̄ = ε̄(z̄). The infinitesimal chiral transformations
for (2.10) yield the following field transformations:

δR1 = ε1 + ε̄1 + 2ε−ψ̃1 + 2ε̄+χ̃1

δR2 = ε2 + ε̄2 − ε−ψ̃1 − ε̄+χ̃1

δψ̃1 = ε+ − ε1ψ̃1 + ε̄+ e−R1 − ε−ψ̃2
1

δχ̃1 = ε̄− − ε̄1χ̃1 + ε− e−R1 − ε̄+χ̃
2
1 (3.30)

δψ̃2 = ε−(ψ̃1ψ̃2 − ψ̃3) − ε2ψ̃2

δχ̃2 = ε̄+(χ̃1χ̃2 − χ̃3) − ε̄2χ̃2

δψ̃3 = −(ε1 + ε2)ψ̃3 + ε̄+ψ̃2 e−R1 − ε−ψ̃1ψ̃3

δχ̃3 = −(ε̄1 + ε̄2)χ̃3 + ε−χ̃2 e−R1 − ε̄+χ̃1χ̃3.

As a consequence of the invariance of the action (2.9) under the chiral transformations (3.30)
we find Noether currents to correspond to the chiral currents (2.11) associated with the G0

0
subalgebra. For the explicit example of the G0 = SL(3) we have

J−α1 = ∂ψ̃1 − ψ̃2
1∂χ̃1 eR1 + ∂χ̃2(ψ̃1ψ̃2 − ψ̃3) eR2

+ (∂χ̃3 − χ̃2∂χ̃1)(ψ̃1ψ̃2 − ψ̃3)ψ̃1 eR1+R2 + ψ̃1∂R1

Jα1 = ∂χ̃1 eR1 − ψ̃2(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

Jλ1·H = 1
3 (2∂R1 + ∂R2) − ψ̃1∂χ̃1 eR1 + (ψ̃1ψ̃2 − ψ̃3)(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

Jλ2·H = 1
3 (∂R1 + 2∂R2) − ψ̃2∂χ̃2 eR2 − ψ̃3(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

(3.31)
J̄ α1 = ∂̄ χ̃1 − χ̃2

1 ∂̄ψ̃1 eR1 + ∂̄ψ̃2(χ̃1χ̃2 − χ̃3) eR2

+ (∂̄ψ̃3 − ψ̃2∂̄ψ̃1)(χ̃1χ̃2 − χ̃3)χ̃1 eR1+R2 + χ̃1∂R1

J̄−α1 = ∂̄ψ̃1 eR1 − χ̃2(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

J̄ λ1·H = 1
3 (2∂̄R1 + ∂̄R2) − χ̃1∂̄ψ̃1 eR1 + (χ̃1χ̃2 − χ̃3)(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

J̄ λ2·H = 1
3 (∂̄R1 + 2∂̄R2) − χ̃2∂̄ψ̃2 eR2 − χ̃3(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

where ∂̄J = ∂J̄ = 0 and J = Jλ1·Hh1 + Jλ2·H h2 +
∑

α=α1,α2,α1+α2
JαE−α + J−αEα .
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One can easily verify that the algebra of the local (chiral ) infinitesimal transformations
(3.30), which leaves invariant the action of the ungauged IM (2.9) is (SL(2) ⊗ U(1))left ⊗
(SL(2) ⊗ U(1))right.

3.2. Global symmetries in the coset G0
/
G0

0

The reduced model in the coset G0
/
G0

0 is obtained by implementing the additional constraints
(2.12), i.e. by the vanishing of the chiral currents (2.12). For the SL(3) example this allows
the elimination of four degrees of freedom Ri, ψ̃1 and χ̃1, i.e., taking into account (3.31) and
(2.12) we find

∂R1 = 2ψ̃1∂χ̃1 eR1 − ψ̃2∂χ̃2 eR2 + (∂χ̃3 − χ̃2∂χ̃1)(ψ̃3 − 2ψ̃1ψ̃2) eR1+R2

∂R2 = −ψ̃1∂χ̃1 eR1 + 2ψ̃2∂χ̃2 eR2 + (∂χ̃3 − χ̃2∂χ̃1)(ψ̃3 + ψ̃1ψ̃2) eR1+R2

∂ψ̃1 = ψ̃3∂χ̃2 eR2 ∂χ̃1 = ψ̃2(∂χ̃3 − χ̃2∂χ̃1) eR2

∂̄R1 = 2χ̃1∂̄ψ̃1 eR1 − χ̃2∂̄ψ̃2 eR2 + (∂̄ψ̃3 − ψ̃2∂̄ψ̃1)(χ̃3 − 2χ̃1χ̃2) eR1+R2

∂̄R2 = −χ̃1∂̄ψ̃1 eR1 + 2χ̃2∂̄ψ̃2 eR2 + (∂̄ψ̃3 − ψ̃2∂̄ψ̃1)(χ̃3 + χ̃1χ̃2) eR1+R2

∂̄ψ̃1 = χ̃2(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR2 ∂̄ χ̃1 = χ̃3∂̄ψ̃2 eR2 .

(3.32)

In order to eliminate the unphysical fields Ri, ψ̃1 and χ̃1 we recall equation (2.19) relating
the fields of the gauged and ungauged models (2.25) and (2.9), respectively. In terms of these
variables the transformations (3.30) become

δψ1 = 1
2 (−ε1 − ε2 + ε̄1 + ε̄2)ψ1 − 1

2ε−ψ1ψ̃1 + ε̄+
(
ψ2 e− 1

2 R1 + 1
2ψ1χ̃1

)
δχ1 = 1

2 (ε1 + ε2 − ε̄1 − ε̄2)χ1 − 1
2 ε̄+χ1χ̃1 + ε−

(
χ2 e− 1

2 R1 + 1
2χ1ψ̃1

)
δψ2 = ε−

(
1
2ψ2ψ̃1 − ψ1 e− 1

2 R1
) − 1

2 ε̄+ψ2χ̃1 + 1
2 (−ε2 + ε̄2)ψ2

δχ2 = ε̄+
(

1
2χ2χ̃1 − χ1 e− 1

2 R1
) − 1

2ε−χ2ψ̃1 + 1
2 (ε2 − ε̄2)χ2

(3.33)

where εi, ε̄i , ε± and ε̄± now satisfy certain restrictions2 (see equation (3.47) below) which
forces them to be constants. By simplifying equation (3.32) we obtain the nonlocal fields Ri

in the form

∂R1 = ψ1∂χ1

�

(
1 +

3

2
ψ2χ2

)
− ψ2∂χ2

�

(
�2 +

3

2
ψ1χ1

)

∂R2 = ψ1∂χ1

�
+

ψ2∂χ2

�

(
2�2 +

3

2
ψ1χ1

)

∂̄R1 = χ1∂̄ψ1

�

(
1 +

3

2
ψ2χ2

)
− χ2∂̄ψ2

�

(
�2 +

3

2
ψ1χ1

)

∂̄R2 = χ1∂̄ψ1

�
+

χ2∂̄ψ2

�

(
2�2 +

3

2
ψ1χ1

)
(3.34)

2 Coming from the requirement of the invariance of constraints equations (3.32).
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where � = (1 + ψ2χ2)
2 + ψ1χ1

(
1 + 3

4ψ2χ2
)
,�2 = 1 + ψ2χ2. In addition we find

∂χ̃1 = ψ2

�

(
∂χ1�2 − 1

2
χ1ψ2∂χ2

)
e− 1

2 R1

∂ψ̃1 = ψ1

�

(
∂χ2(1 + ψ1χ1 + ψ2χ2) − 1

2
χ2ψ1∂χ1

)
e− 1

2 R1

∂̄ψ̃1 = χ2

�

(
∂̄ψ1�2 − 1

2
ψ1χ2∂̄ψ2

)
e− 1

2 R1

∂̄ χ̃1 = χ1

�

(
∂̄ψ2(1 + ψ1χ1 + ψ2χ2) − 1

2
χ1ψ2∂̄ψ1

)
e− 1

2 R1 .

(3.35)

We next define the conserved topological currents

jRi ,µ = εµν∂νRi i = 1, 2 jψ̃1,µ
= εµν∂νψ̃1 jχ̃1,µ = εµν∂νχ̃1. (3.36)

Using the equations of motion derived from (2.25), one can confirm the following conservation
laws:

∂̄j = ∂j̄ j = jψ̃1
jχ̃1 j = jRi

i = 1, 2 (3.37)

where j = 1
2 (j0 + j1), j̄ = 1

2 (j0 − j1). Note that (3.34) and (3.35) define the nonlocal fields
R1, R2, ψ̃1, χ̃1 in terms of the physical fields ψ1, ψ2, χ1 and χ2. Hence, the conservation of
the currents defined by the r.h.s. of (3.34) and (3.35) is non-trivial and requires the use of the
equations of motion.

3.3. Algebra of the global symmetries

The simplest way to derive the algebra of symmetries of gauged IM (2.25) (generated by
transformations (3.33)) is to realize the charges of non-chiral conserved currents (3.34), (3.35)
and (3.36)

Q1 = 1

3

∫
(2∂xR1 + ∂xR2) dx Q2 = 1

3

∫
(∂xR1 + 2∂xR2) dx

(3.38)
Qχ̃1 = Q− =

∫
∂xχ̃1 dx Qψ̃1

= Q+ =
∫

∂xψ̃1 dx

in terms of the canonical momenta

�ψ1 = δL
δψ̇1

= −k

2π

(
∂χ1

�
(1 + ψ2χ2) − 1

2

∂χ2

�
χ1ψ2

)

�ψ2 = δL
δψ̇2

= −k

2π

(
∂χ2

�
(1 + ψ1χ1 + ψ2χ2) − 1

2

∂χ1

�
χ2ψ1

)

�χ1 = δL
δχ̇1

= −k

2π

(
∂̄ψ1

�
(1 + ψ2χ2) − 1

2

∂̄ψ2

�
χ2ψ1

)

�χ2 = δL
δχ̇2

= −k

2π

(
∂̄ψ2

�
(1 + ψ1χ1 + ψ2χ2) − 1

2

∂̄ψ1

�
χ1ψ2

)
.

(3.39)
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By substituting (3.39) in equations (3.34) and (3.35) we obtain

∂R1 = −2π

k

(
ψ1�ψ1 − ψ2�ψ2

)
∂̄R1 = −2π

k

(
χ1�χ1 − χ2�χ2

)
∂R2 = −2π

k

(
ψ1�ψ1 + 2ψ2�ψ2

)
∂̄R2 = −2π

k

(
χ1�χ1 + 2χ2�χ2

)
∂χ̃1 = −2π

k
ψ2�ψ1 e− 1

2 R1 ∂̄ χ̃1 = −2π

k
χ1�χ2 e− 1

2 R1

∂ψ̃1 = −2π

k
ψ1�ψ2 e− 1

2 R1 ∂̄ψ̃1 = −2π

k
χ2�χ1 e− 1

2 R1 .

(3.40)

In order to calculate the field transformations

δ±ψi = {Q±, ψi}εg
± δ±χi = {Q±, χi}εg

±
(3.41)

δjψi = {Qj,ψi}εg

j δjχi = {Qj, χi}εg

j

we use the canonical Poisson brackets (PBs) (where εg are constant parameters){
�φi

(x), φk(y)
} = δikδ(x − y) φk = ψi, χi (3.42)

and also a few consequences of (3.24) and (3.40)

{∂xR1(x), ψi(y)} = (−1)i+1ψi(y)δ(x − y) {∂xR1(x), χi(y)} = (−1)iχi(y)δ(x − y)

{∂xR2(x), ψ2(y)} = 2ψ2(y)δ(x − y) {∂xR2(x), χ2(y)} = −2χ2(y)δ(x − y)

(3.43)

etc. Evaluating the corresponding PBs we find the field transformations we seek

δ+χ1 = 1
2

(
χ2 e− 1

2 R1 + 1
2χ1ψ̃1

)
ε

g
+ δ−χ1 = 1

4χ1χ̃1ε
g
−

δ+ψ1 = − 1
4ψ1ψ̃1ε

g
+ δ−ψ1 = − 1

2

(
ψ2 e− 1

2 R1 + 1
2ψ1χ̃1

)
ε

g
−

δ+χ2 = − 1
4χ2ψ̃1ε

g
+ δ−χ2 = 1

2

(
χ1 e− 1

2 R1 − 1
2χ2χ̃1

)
ε

g
−

δ+ψ2 = − 1
2

(
ψ1 e− 1

2 R1 − 1
2ψ2ψ̃1

)
ε

g
+ δ−ψ2 = 1

4ψ2χ̃1ε
g
−.

(3.44)

Note that the above transformations are nonlocal due to the presence of ψ̃1, χ̃1 and R1 which
are defined in terms of integrals of the fields ψi, χi and their derivatives

ψ̃1(x) = 1

2

∫
ε(x − y)(ψ1(y)�ψ2(y) − χ2(y)�χ1(y)) e− 1

2 R1(y) dy

R1(x) = 1

2

∫
ε(x − y)(ψ1(y)�ψ1(y) − ψ2(y)�ψ2(y) − χ1(y)�χ1(y) + χ2(y)�χ2(y)) dy

(3.45)

and χ̃1 = ψ̃1(ψ1 ↔ ψ2, χ1 ↔ χ2). Instead the transformations generated by the charges Q1

and Q2 have the following simple, local and linear in the fields form:

δ1χ1 = −χ1ε
g

1 δ2χ1 = −χ1ε
g

2

δ1ψ1 = ψ1ε
g

1 δ2ψ1 = ψ1ε
g

2

δ1χ2 = 0 δ2χ2 = −χ2ε
g

2

δ1ψ2 = 0 δ2ψ2 = ψ2ε
g

2 .

(3.46)

Observe that the above transformations coincide precisely with the transformations (3.33)
derived in section 3.2 provided the following identities take place:

2ε
g

1 = ε̄1 − ε1 2ε
g

2 = ε̄2 − ε2
1
2ε

g
+ = ε− − 1

2ε
g
− = ε̄+. (3.47)
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The PB algebra of the charges Q±,Q1,Q2 can be evaluated with the help of
equations (3.42), (3.43) and (3.45) yielding the following deformed structure:

{Q1,Q±} = ±Q± {Q2,Q±} = 0 (3.48)

{Q+,Q−} = −
(

2π

k

)2 ∫
∂x e−R1 dx = 2κ

(
2π

k

)2

sinh

(
Q1 − 1

2
Q2

)
where κ = exp

(
1
2 (R1(∞) + R1(−∞))

)
. Note that κ is a constant operator commuting with

all the other generators. Finally, one can verify the invariance of the gauged IM (2.25) under
the above nonlocal transformations by calculating the PBs of the charges Q±,Qi with the
Hamiltonian of the model

H =
∫

dx((1 + ψ2χ2)�χ2�ψ2 +
1

2
ψ2χ1�χ1�ψ2 + (1 + ψ1χ1 + ψ2χ2)�χ1�ψ1

+
1

2
ψ1χ2�χ2�ψ1 + ψ ′

1�ψ1 + ψ ′
2�ψ2 − χ ′

1�χ1 − χ ′
2�χ2 + V ). (3.49)

After a tedious but straightforward calculations we find that

{Q±,H } = 0 {Qi,H } = 0.

Hence the IM in consideration is invariant under the algebra (3.48), which after certain
rescaling of the generators (see, for example, [26]) can be identified with the q-deformed
SL(2, R) ⊗ U(1) PB algebra.

4. Dressing transformations and vertex operators

As is well known [6, 25] the dressing transformation and the vertex operators method represent
a powerful tool for the construction of soliton solutions for the affine Toda models. Let us
consider two arbitrary solutions Bs ∈ Ĝ0, s = 1, 2 of equations (2.7) written for the case of
A

(1)
2 extended by d and the central term c, i.e.

Bs = g0s eνsc+ηsd .

The corresponding Lax (L-S) connections (2.27) A(s) = A(Bs), Ā(s) = Ā(Bs) are related
by gauge (dressing) transformations θ−,+ = expG<,>,

Aµ(2) = θ±Aµ(1)θ−1
± +

(
∂µθ±

)
θ−1
± . (4.50)

They leave invariant the equations of motion (2.7) as well as the auxiliar linear problem, i.e.
the pure gauge Aµ defined in terms of the monodromy matrix T (Bs),

(∂µ − A(Bs)µ)Ts(Bs) = 0. (4.51)

The consistency of equations (4.50) and (4.51) imply the following relations:

T2 = θ±T1 i.e. θ+T1 = θ−T1g
(1) (4.52)

where g(1) ∈ Ĝ is an arbitrary constant element of the corresponding affine group. Suppose
T1 = T0(Bvac) is the vacuum solution,

Bvacε−B−1
vac = ε− ∂̄BvacB

−1
vac = µ2zc

Avac = −ε− Āvac = ε+ + µ2zc
(4.53)

and T0 = exp(−zε−) exp(z̄ε+) as one can easily check by using the fact that [ε+, ε−] = µ2c.
According to equations (4.50) and (4.52), every solution T2 = T (B) can be obtained from
vacuum configuration (4.53) by an appropriate gauge transformation θ±. In fact, equations
(4.50) with Avac and Āvac as in equation (4.53) and

A(B) = −Bε−B−1 Ā(B) = ε+ + ∂̄BB−1
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allow us to derive θ± as functionals of B, i.e. θ± = θ±(B). We next apply equations (4.52),

θ−1
− θ+ = Tvacg

(1)T −1
vac (4.54)

in order to obtain a non-trivial field configuration B in terms of g(1) ∈ G and a certain highest
weight (h.w.) representation of the algebra A

(1)
2 as we shall see below. The first step consists in

substituting Avac, Āvac and A(B), Ā(B) in equation (4.50) and then solving it grade by grade
remembering that θ± may be decomposed in the form of infinite products

θ− = et (0) et (−1) . . . θ+ = ev(0) ev(1) . . .

where t (−k) and v(k), k = 1, 2, . . . denote linear combinations of grade p = ∓k generators.
For grade zero we find

t (0) = H(z̄) ev(0) = B eG(z)−µ2zz̄c

where the arbitrary functions H(z̄),G(z) ∈ G0
0 and are fixed to zero due to the subsidiary

constraints (3.34), (3.35), i.e., H(z̄) = G(z) = 0. The equations for v(1), t (−1) appear to be
of the form

B−1∂B − µ2z̄c = [v(1), ε−] ∂̄BB−1 = [t (−1), ε+] + µ2zc.

The next step is to consider certain matrix elements (taken for the h.w. representation |λl〉) of
equation (4.54). Since v(i)|λl〉 = 0 and 〈λl|t (−i) = 0, i > 0, we conclude that

〈λl|B|λl〉 e−µ2zz̄ = 〈
λl

∣∣T0g
(1)T −1

0

∣∣λl

〉
. (4.55)

Taking into account the explicit parametrization of the zero grade subgroup element B = nam

(2.8) in terms of the fields, ν, Ri, ψa, χa and choosing specific matrix elements we derive their
explicit spacetime dependence,

τ0 ≡ eν−µ2zz̄ = 〈
λ0

∣∣T0g
(1)T −1

0

∣∣λ0
〉

τ1 ≡ e
1
3 (2R1+R2)+ν−µ2zz̄ = 〈

λ1

∣∣T0g
(1)T −1

0

∣∣λ1
〉

τ2 ≡ e
1
3 (R1+2R2)+ν−µ2zz̄ = 〈

λ2

∣∣T0g
(1)T −1

0

∣∣λ2
〉

τψ3 ≡ e
1
3 (2R1+R2)+ν−µ2zz̄ψ̃3 = 〈

λ1

∣∣T0g
(1)T −1

0 E
(0)
−α1−α2

∣∣λ1
〉

τχ3 ≡ e
1
3 (2R1+R2)+ν−µ2zz̄χ̃3 = 〈

λ1

∣∣E(0)
α1+α2

T0g
(1)T −1

0

∣∣λ1
〉

(4.56)

τψ2 ≡ e
1
3 (R1+2R2)+ν−µ2zz̄ψ̃2 = 〈

λ2

∣∣T0g
(1)T −1

0 E
(0)
−α2

∣∣λ2
〉

τχ2 ≡ e
1
3 (R1+2R2)+ν−µ2zz̄χ̃2 = 〈

λ2

∣∣E(0)
α2

T0g
(1)T −1

0

∣∣λ2
〉

τψ1 ≡ e
1
3 (2R1+R2)+ν−µ2zz̄ψ̃1 = 〈

λ1

∣∣T0g
(1)T −1

0 E
(0)
−α1

∣∣λ1
〉

τχ1 ≡ e
1
3 (2R1+R2)+ν−µ2zz̄χ̃1 = 〈

λ1

∣∣E(0)
α1

T0g
(1)T −1

0

∣∣λ1
〉
.

In order to make the construction of solution (4.56) complete it remains to specify the constant
affine group element g(1), which encodes the information (including topological properties)
about the N-soliton structure of equations (2.7).

Since ε± form a Heisenberg subalgebra, [ε+, ε−] = µ2c and we have to calculate the
matrix elements (τ -functions ), say

〈λ0| e−zε− ez̄ε+g(1) e−z̄ε+ ezε−|λ0〉
it is instructive to introduce the eigenvectors (F (γ )) of ε±, i.e.,

[ε±, F (γ )] = f ±(γ )F (γ ). (4.57)
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Following [24] (see also [11]) we find four non-trivial types of eigenvectors

F±(γ ) =
∑
n∈Z

(
E

(n)
±α2

+ E
(n)

±(α1+α2)

)
γ −n F̃±(γ ) =

∑
n∈Z

(
E

(n)
±α2

− E
(n)

±(α1+α2)

)
γ −n (4.58)

as well as the trivial eigenvectors

F 0
±(γ ) =

∑
n∈Z

E
(n)
±α1

γ −n. (4.59)

Their eigenvalues are given by

[ε+, F±(γ )] = ±µγF±(γ ) [ε+, F̃±(γ )] = ±µγ F̃±(γ ) [ε+, F
0
±(γ )] = 0

[ε−, F±(γ )] = ±µγ −1F±(γ ) [ε−, F̃±(γ )] = ±µγ −1F̃±(γ ) [ε−, F 0
±(γ )] = 0.

(4.60)

Note that F±(γ ), F̃±(γ ) and F 0
±(γ ) together with

λi · H(γ ) =
∑
n∈Z

λi · H(n)γ −n i = 1, 2 (4.61)

form a new basis for the affine A
(1)
2 algebra. In this basis, we define the affine group element

g(1) as

g(1) =
∏
a

edaFa(γ ) Fa(γ ) = {F±, F̃±, λi · H(γ ), i = 1, 2, F 0
±(γ )}

with the property

T0g
(1)T −1

0 = exp

(∑
a

daρa(γ )Fa(γ )

)
=

∏
a

(1 + daρa(γ )Fa(γ ))

(4.62)
ρa(γ ) = exp

( − zf −
a (γ ) + z̄f +

a (γ )
)
.

The use of this basis drastically simplifies the calculation of the τ -functions (4.56). Note that
in the above formula each F 2

a = 0, but the mixed terms FaFb do contribute [24].

5. Two-vertex soliton solutions

An important question concerns the specific choice of the form of g(1) that leads to different
species of neutral and charged solitons and breathers. As in the case of the complex sine-
Gordon model the 1-soliton solutions can be constructed in terms of two-vertex operators, i.e.,
g(1) chosen in one of the following forms:

g(1)(γ1, γ2) = ed1F+(γ1) ed2F−(γ2) (5.63)

g̃(1)(γ1, γ2) = ed̃1F̃ +(γ1) ed̃2F̃−(γ2) (5.64)

g
(1)
01 (γ1, γ2) = ed01F+(γ1) ed̃01F̃−(γ2) (5.65)

g
(1)
02 (γ1, γ2) = ed̃02F̃ +(γ1) ed02F−(γ2). (5.66)

For the case given by equation (5.63) according to (4.62) we find for the τ -functions (4.56)

τ0 = 1 + 2 d1 d2ρ1(γ1)ρ2(γ2)
γ1γ2

(γ1 − γ2)2

τ1 = 1 + d1 d2ρ1(γ1)ρ2(γ2)
γ1(γ1 + γ2)

(γ1 − γ2)2
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τ2 = 1 + 2 d1 d2ρ1(γ1)ρ2(γ2)
γ 2

1

(γ1 − γ2)2

τψ3 = τψ2 = d1ρ1(γ1) τχ3 = τχ2 = d2ρ2(γ2)

τψ1 = τχ1 = d1 d2ρ1(γ1)ρ2(γ2)
γ1

γ1 − γ2

(5.67)

where ρ1(γ1) = exp
(− z

γ1
+ z̄γ1

)
and ρ2(γ2) = exp

(
z
γ2

− z̄γ2
)
. In order to ensure the reality

(and positivity) of the energy of the solution, we require the product ρ1(γ1)ρ2(γ2) to be real.
This leads to the following parametrization for γi :

γ1 = −eb−iα γ2 = eb+iα b, α ∈ R

and for ρi(γi) we obtain

ρ1 = eF+iG ρ2 = eF−iG z = 1
2 (x + t) z̄ = 1

2 (t − x)

F = µ cos(α)[−t sinh(b) + x cosh(b)] G = µ sin(α)[t cosh(b) − x sinh(b)].

It is convenient to choose the arbitrary complex constants d1 and d2 in the form

d1 = γ1 − γ2√
2γ1γ2

eiθ−µY cos(α) cosh(b) d2 = γ1 − γ2√
2γ1γ2

e−iθ−µY cos(α) cosh(b)

where θ and Y are new arbitrary real constants. Then the 1-soliton solutions corresponding to
two-vertex g(1) (5.63) take the following simple form:

eν−µ2zz̄ = 1 + e2F̃

e
1
3 (2R1+R2) = e−F̃ + 1

2 (1 − 
1) eF̃

eF̃ + e−F̃

1 = e−2iα

e
1
3 (R1+2R2) = e−F̃ − 
1 eF̃

eF̃ + e−F̃

2 = d1 e−iθ+µY cos(α) cosh(b) = γ1 − γ2√

2γ1γ2

ψ1 = 
2 ei(G+θ)

(eF̃ + e−F̃ )

(
e−F̃ − 
1 eF̃

e−F̃ + 1
2 (1 − 
1) eF̃

) 1
2

(5.68)

χ1 = 
2 e−i(G+θ)

(eF̃ + e−F̃ )

(
e−F̃ − 
1 eF̃

e−F̃ + 1
2 (1 − 
1) eF̃

) 1
2

ψ2 = 
2 ei(G+θ)

(eF̃ + e−F̃ )

(
e−F̃ + eF̃

e−F̃ + 1
2 (1 − 
1) eF̃

) 1
2

χ2 = 
2 e−i(G+θ)

(eF̃ + e−F̃ )

(
e−F̃ + eF̃

e−F̃ + 1
2 (1 − 
1) eF̃

) 1
2

where F̃ (t, x) = F(t, x−Y ). The nonlocal fields ψ̃1 and χ̃1 (whose asymptotics are important
for determining the charges Q±) are given by

ψ̃1 = χ̃1 = − (1 + 
1) e2F̃

2
(
1 + 1

2 (1 − 
1) e2F̃
) . (5.69)

As well known [6, 7, 10] the energy of such a solution is related to the asymptotics of ln τ0,
i.e.,

M = E(b = 0) =
∫ ∞

−∞
dxT00 = − 2

β2

∫ ∞

−∞
dx∂x ln τ0 = 4µ

β2
cos(α) β2 = 2π

k
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in the rest frame b = 0. The corresponding Noether charges Q1 and Q2 (see equations (3.38))
are defined by the asymptotics of the nonlocal fields Ri

Q1 = −i (α + π + i ln(cos(α))) Q2 = −i(α + π + i ln(2 cos(α))). (5.70)

Similarly, for the charges Q± we find

Q+ = Q− = ψ̃1(∞) − ψ̃1(−∞) = 
1 + 1


1 − 1
= i cot g(α).

Therefore, the spectrum of the above 1-soliton solutions, i.e., M,Q1,Q2 and Q±, is determined
by the real constant α only.

The case when g(1) is taken in the form (5.64) is quite similar to that considered above.
The only difference is that now we have

τψ3 = −τψ2 τχ3 = −τχ2 τψ1 = τχ1 = −d̃1d̃2ρ1ρ2
γ1

γ1 − γ2

and all the other τ -functions remain unchanged. As a consequence, the mass M̃ and charges
Q̃1, Q̃2 are the same and Q̃± = −Q±. The cases (5.65) and (5.66) are quite different. We
find that

τ0 = τ2 = 1 τ1 = 1 − d1d̃2ρ1(γ1)ρ2(γ2)
γ1

γ1 − γ2

τψ1 = −τχ1 = d1d̃2ρ1(γ1)ρ2(γ2)
γ1

γ1 − γ2

τψ3 = −τψ2 = d1ρ1(γ1) τχ3 = −τχ2 = −d̃2ρ2(γ2).

Such a solution has vanishing mass and charge Q2 = 0.

6. Concluding remarks

Our analysis of the symmetries and 1-soliton solutions of the IM (2.25) leaves a few interesting
open problems:

• How to construct more general 1-soliton solutions whose spectrum, M,Q1,Q2 and Q±,
is parametrized by four real parameters instead of one α as in equation (5.68).

• What are the symmetry properties of the 1-solitons (5.68), i.e. how to recognize the
representations of the q-deformed algebra (3.48) to which these solitons belong.

• About the topological stability of these solitons and of the related strong-coupling particles
of the IM (2.25).

The complete structure of the solitons (and particles) spectrum of such IM indeed requires
answers to the above questions.
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